1 Significance

Every year, about 700,000 Americans suffer a stroke, making it the third most frequent cause of death and the
leading cause of permanent disability in the country[1]. Survivors of stroke undergo physical wrist therapy to regain
functional movement for daily activities[2]. Traditional physical therapy, primarily guided by physical therapists, is
a standard method for treating conditions like Stroke, Arthritis, SCl and Carpal Tunnel Syndrome [3]. However, this
conventional approach often leads to therapist fatigue, potentially diminishing the quality of care and increasing
patient costs [4][5]. Moreover, based on a 2018 study conducted by the World Health Organization, half of the
population requiring rehabilitation encounters restricted access primarily due to the elevated expenses associated
with physical therapy [6]. Excluding surgical expenses, the annual cost of robotic-assisted therapy can reach up to
$70,000 for patients [7]. Thus, there is a urgent need for wrist rehabilitation robots to address these challenges.[8]

Recent clinical research highlights the benefits of robotic technology in aiding individuals with hand impair-
ments, accelerating recovery, and lessening the burden on therapists [9][10]. Research detailed in [11] suggests
that rehabilitation robotics can be integrated into specific training routines, offering a cost-effective alternative to
intensive one-on-one physiotherapy sessions. Notably, robotic training has been shown to be as effective as tra-
ditional rehabilitation, with some studies indicating superior outcomes for patients undergoing robotic training
compared to conventional methods[12].

Furthermore, the integration of robotics with gamification environments is beneficial[13]. This directly affects
the patient’s motivation and cognitive engagement, which eventually determines the efficacy of rehabilitation[14].
Findings suggest that gamification, applied in conditions such as shoulder surgery, rheumatoid arthritis, and low
back pain, yields outcomes comparable or superior to conventional therapies[15][16][17].

2 Innovation

Recent developments in rehabilitation technology have greatly enhanced forearm and wrist movement exercises.
Notable devices in this domain include the Cramer system[18], Rice Wrist[19], Hand Mentor[20], and Hward [21],
each specifically tailored for these types of exercises. An innovative addition to this field is the Droid glove, which
integrates game-based rehabilitation methods [22]. This system features a wrist rehabilitation application com-
patible with Android smartphones, leveraging motion and position sensors to facilitate specific hand movement
exercises. It allows therapists to tailor exercises to individual needs, with the app adjusting according to the user’s
progress. Additionally, this system can relay movement data to doctors, aiding in the evaluation of treatment
effectiveness[22]. Moreover, some rehabilitation technologies have incorporated virtual reality and mixed reality,
which has shown significant benefits in improving wrist range and speed for many patients[23][24][25]. A notewor-
thy advancement is the combination of Leap Motion technology with a wrist rehabilitation robot and the Digits-
wrist worn sensor [26][27][28]. Thisintegration, along with elements of gamification, substantially improves the re-
habilitation process[27][29], offering a compelling and effective method for patients to enhance hand functionality[30].

We designed a robotic sleeve for wrist rehabilitation, aiming to enhance hand motor functions. The lightweight
and portable sleeve facilitates movement in four directions: abduction, adduction, extension, and flexion. To in-
crease patient engagement, we have developed a game where the patient catches virtual spheres using physical
wrist movements. Spheres randomly appear on screen for the patient to reach, disappearing after a set amount of
time. The range that these spheres appear in is tailored to the patient’s range of motion, with spheres able to spawn
a bit further than the maximum distance reached in each direction. This encourages the patient to try to reach just
beyond what they are able to, strengthening their muscles and range of motion. The flexibility of the game en-
vironment also allows for the therapist to create unique patterns for the patient to follow. The game can lead the
patient through rehabilitation techniques, like circular or spiral patterns, with a focus on accuracy or speed, and de-
crease load on the therapist. An added benefit of gamification is the therapist’s ability to track a patient’s progress.
Recording their motion and success rates enables the patient to see their progress visually over time through direct
comparison between their range of motion at two different points in time.



3 Approach

3.1 Aim 1: Designing and Fabrication of the Sleeve

The design of the sleeve began with a rough sketch, aiming to create a low cost, comfortable, adaptable, and
lightweight piece that could withstand the forces exerted by motors and elastic bands while remaining portable.
The initial concept, shown in Figure 1, featured a sleeve extending from the knuckles to just past the elbow, cov-
ering the entire forearm. Black elastic fabric, chosen for its versatility, was sewn to fit wrist diameters from 2.8 to
3.5 inches. Motors were placed on the dorsal and median sides, with the ulnar and palmar sides controlled pas-
sively via elastic bands. Hooks were added where strings and elastic bands attached to the fabric, allowing tension
adjustment as needed.

As fabrication commenced, it became evident that the design required refinement to prevent fabric from de-
forming. This led to the introduction of three straps between different fingers, augmenting the structure and fit.
The first and second straps, sewn at both ends, are labeled 1 and 2 in Figure 2. The third strap, marked as 3 and
fitted with Velcro, provided adjustable comfort. Strategically placing heat welded guides were added to direct the
forces on the hand, facilitating abduction, adduction, extension, and flexion.

The sleeve’s design required iterations to reinforce the softer parts of the sleeve to withstand the motor’s ap-
plied forces.To prevent the motor from pulling the sleeve of the fabric down the arm and to allow wrist manipulat-
ing, a velcro band was added above the elbow, which locks the fabric of the sleeve in place. The elastic fabric for the
sleeve necessitated additional support to hold the motor in place against the forearm. A rubber band is wrapped
around the forearm covering the back of the motor, applying a resistive force to keep it flat.

The sleeve can be manufactured using easy to source materials for a low total cost of $101. The arduino comes
in as the biggest ticket item, costing $25. The construction of the sleeve, including all fabric, pins, and elastics, costs
$25. The IMUs are $12 each, and the 2 motors and drivers cost $12 together. The various electrical components,
including breadboard, power supply and wiring, cost $15. A table for this data can be found in Appendix A.
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Figure 1: Interpolation for Data 1

Figure 2: Interpolation for Data 2



3.2 Aim 2: Motor Integration

Aim 2: Motor Integration Two motors, specifically 24BYJ48 Stepper Motors, are strategically mounted on the dorsal
and median sides of the forearm, integrating into the design. This placement is complemented by hooks on the
ulnar and palmar sides, which serve to attach elastic bands, crucial for the reciprocal movement mechanism. The
stepper motors are driven by a ULN2003N Stepper Motor Driver and controlled by an Atmega328P microcontroller
housed on an Arduino UNO board, ensuring reliable and programmable motor operation. The mechanism operates
on a simple yet effective principle: flexion is achieved passively when the motors do not exert tension, allowing
the elastic bands to maintain their normal length. In contrast, extension is actively driven by the motors pulling
the strings, causing the elastic bands to deform. A small amount of tension is needed from the motor that is not
driven to balance out the elastic band and straighten the hand. This system is mirrored for the movements of
adduction and abduction, utilizing a similar arrangement of strings, motors, and elastic bands to facilitate these,
demonstrating a versatile and adaptive approach.

3.3 Aim 3: Sensor Integration and Game Development

The wrist rehabilitation system employs two Inertial Measurement Units (IMUs) to accurately monitor the wrist’s
angles, crucial for the precise tracking of movements. One IMU is strategically mounted at the base of the wrist, a
location that remains stationary in relation to the hand, serving as a stable reference point. In contrast, the second
IMU is placed near the knuckles to measure more dynamic movement. This dual-IMU setup allows foracomprehen-
sive tracking of wrist movements, with the base IMU acting as a reference to account for any unintended full-arm
movements by the patient.

To ensure the reliability of the data collected, the system includes a filtering process to eliminate any undesir-
able noise from the IMUs, enhancing the accuracy of the measurements. The processed data, specifically the yaw
and pitch angles of the wrist, are then transmitted via a Serial bus to a computer. This computer runs an interactive
game, as illustrated in Figure 3, designed to aid in rehabilitation. In the game, the patient controls a virtual hand,
using their actual wrist movements, to catch spheres that appear randomly within the virtual environment. The fre-
quency of the spheres’ appearance is adjustable based on the difficulty setting, allowing for tailored rehabilitation
intensity. In addition, the game can be customized for different training exercises, allowing spheres to populate in
star or spiral patterns. The game is not only a tool for therapy but also serves as a metric for progress, recording
their accuracy, speed, and flexibility over time. This provides valuable feedback on the patient’s performance and
recovery trajectory, offering an engaging and measurable way to track rehabilitation progress over time.

Figure 3: Game Design
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A Appendix 1: Cost Table

Item Quantity | Cost perIltem | Total Cost
Arduino UNO 1 $25 $25
Stepper Motor + Driver Board | 2 $6 $12
MPU6050 IMU 2 $12 $24
Sleeve Materials Cost - - $25
Electronics Cost - - $15
Grand Total | $101

Table 1: Cost of Components

B Appendix 2: Low Level Code

#include <Wire.h>
#include <MPU6050_light.h>
#include <Stepper.h>

MPU6050 mpu(Wire);

const float STEPS_PER_REV = 32;

// Amount of Gear Reduction

const float GEAR_RED = 64;

// Number of steps per geared output rotation

const float STEPS_PER_OUT_REV = STEPS_PER_REV * GEAR_RED;
// Defines the number of steps per rotation

const int stepsPerRevolution = STEPS_PER_OUT_REV;

// Creates an instance of stepper class

// Pins entered in sequence INI-IN3-IN2-IN4 for proper step sequence
Stepper myStepperl = Stepper(stepsPerRevolution, 8, 10, 9, 11);
Stepper myStepper2 = Stepper(stepsPerRevolution, 4, 5, 6, 7);

char data;

void setup () {
Serial.begin(115200); // Start the serial communication
Wire.begin ();

byte status = mpu.begin();

Serial.print (F("MPU6050 status: "));

Serial.println (status);

while (status != 0) {} // stop everything if could not connect to MPU6050

Serial.println (F("Calculating offsets, do not move MPU6050"));
delay (1000);

// mpu.upsideDownMounting = true; // uncomment this line if the MPU6050 is mounted

mpu. calcOffsets (); // gyro and accelero
Serial.println ("Done!\n");

upside



void loop () {
if (Serial.available ()) {
data = Serial.read();

}

if (data == ’u’) {

// Serial.printin("Up");
myStepperl.setSpeed (10);

myStepperl.step (stepsPerRevolution / 6);
// delay(1000);

} else if (data == ’d’) {
myStepperl.setSpeed (10);
myStepperl.step(-stepsPerRevolution / 6);
// delay(1000);

}

if (data == ’1’) {
myStepper2.setSpeed (10);
myStepper2.step (stepsPerRevolution / 6);
}
else if(data == ’r’){
myStepper2.setSpeed (10);
myStepper2.step(-stepsPerRevolution / 6);
1

mpu. update ();
int yaw = map(int (mpu.getAnglezZ()), -24, 50, 800, 0); // Get Yaw (Z-axis rotation)
int pitch = map(int(mpu. getAngleY()), -45, 60, 600, 00); // Get Pitch (X-axis rotation)

// Send yaw and pitch to the serial port
Serial.print("Yaw: ");
Serial.print(yaw);

Serial.print(", Pitch: ");
Serial.println (pitch);

delay (100); // Delay to control data rate

C Appendix 2: Low Level Code

import pygame
import sys
import serial
import time
import threading
import random
import keyboard

# Initialize Pygame
pygame.init ()

# Set up the screen dimensions and title



screen_width , screen_height = 800, 600
screen = pygame.display.set_mode ((screen_width, screen_height))
pygame. display.set_caption("Virtual Hand Movement")

# Define colors
BLACK = (0, 0, 0)
RED = (255, 0, 0)

# Load the hand image

hand_image = pygame.image.load("C:/Users/anshm/OneDrive/Desktop/hand.png").convert_alpha ()
# Replace ’hand_image.png’ with your image file

hand_rect = hand_image. get_rect ()

# Serial communication setup
ser = serial.Serial(’COM3’, 115200, timeout=1)
time.sleep (2)

# Variables to store the yaw and pitch values
yaw = 0
pitch = 0

# Sphere variables
sphere_radius = 20

sphere_x, sphere_y = -100, -100 # Initialize off-screen
last_spawn_time = 0

spawn_interval = 3000

sphere_spawned = False

# Score and missed counters
score = 0
missed = 0

# Font for displaying score and missed count
font = pygame.font.Font(None, 36)

# Safe distance definition
safe_distance = 300 # Define a safe distance

# Global variables for calibration
center_yaw = 0
center_pitch = 0

# Function to calibrate the center
def calibrate_center ():
global center_yaw, center_pitch, yaw, pitch
center_yaw = yaw
center_pitch = pitch
print(f"Calibrated to Yaw: {center_yaw}, Pitch: {center_pitch}")
# Function to spawn a new sphere
def spawn_sphere():
global sphere_x, sphere_y, sphere_spawned
while True:
new_x = random.randint(sphere_radius, screen_width - sphere_radius)
new_y = random.randint(sphere_radius, screen_height - sphere_radius)



# Calculate distance to the hand

distance_to_hand = ((new_x - hand_rect.centerx)**2 + (new_y - hand_rect.centery)**;

if distance_to_hand >= safe_distance: # Check if it’s a safe distance
sphere_x, sphere_y = new_x, new_y
sphere_spawned = True
break

def read_serial ():
global yaw, pitch
while True:
if ser.in_waiting > 0:

line = ser.readline ().decode(’utf-8").rstrip ()
if line.startswith("Yaw:"):
yaw_val, pitch_val = line.split(", Pitch: ")
yaw = int(yaw_val.split(’: ’)[1])

pitch = int(pitch_val)

# Start the serial reading in a separate thread
thread = threading.Thread(target=read_serial)
thread.start ()

# Main game loop
while True:

if keyboard.is_pressed(’up’):
ser.write(b’u’)
while keyboard.is_pressed(’up’): # Wait for the key to be released
pass
elif keyboard.is_pressed(’down’):
ser.write(b’d’)
while keyboard.is_pressed(’down’): # Wait for the key to be released
pass
elif keyboard.is_pressed(’left’):
ser.write(b’l”)
while keyboard.is_pressed(’left’):
pass
elif keyboard.is_pressed(’right’):
ser.write(b’r’)
while keyboard.is_pressed(’right’):
pass
elif keyboard.is_pressed(’esc’):
ser.write(b’e’)
for event in pygame.event.get ():
if event.type == pygame.QUIT:
pygame. quit ()
ser.close ()
sys.exit ()

# Check for a specific key press to trigger calibration
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_c: # Press ’C’ to calibrate
calibrate_center ()



current_time = pygame.time.get_ticks ()

# Check if it’s time to spawn a new sphere
if current_time - last_spawn_time > spawn_interval:
if sphere_spawned:
missed += 1
spawn_sphere() # Call the spawn function
last_spawn_time = current_time

# Update hand position based on yaw and pitch
# Map yaw and pitch to screen coordinates here
adjusted_yaw = yaw - center_yaw

adjusted_pitch = pitch - center_pitch
hand_rect.x = adjusted_yaw

hand_rect.y = adjusted_pitch

# print(yaw)

# print(pitch)

# Collision detection

if sphere_spawned and hand_rect.colliderect ((sphere_x - sphere_radius, sphere_y - sphe
score += 1 # Increment score
sphere_spawned = False # Reset sphere spawn

# Fill the screen with black
screen. fill (BLACK)
if sphere_spawned:

pygame.draw. circle (screen, RED, (sphere_x, sphere_y), sphere_radius)
# Display score and missed count
score_text = font.render(f"Score: {score}", True, (255, 255, 255))
missed_text = font.render(f"Missed: {missed}", True, (255, 255, 255))
screen. blit(score_text, (10, 10))
screen. blit (missed_text, (10, 50))

# Blit the hand image
screen. blit (hand_image, hand_rect)

# Update the display
pygame.display. flip ()

10



	Significance
	Innovation
	Approach
	Aim 1: Designing and Fabrication of the Sleeve
	Aim 2: Motor Integration
	Aim 3: Sensor Integration and Game Development

	Appendix 1: Cost Table
	Appendix 2: Low Level Code
	Appendix 2: Low Level Code

